Two New Securinega Alkaloids from Securinega suffruticosa

by Song Qin^a), Jing-Yu Liang^b), and Yue-Wei Guo*^a)

^a) State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China (phone: 86-21-50805813; e-mail: ywguo@mail.shcnc.ac.cn)
 ^b) Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009,

P. R. China

Two new *Securinega* alkaloids, 2-episecurinol A (1) and 8-(diethylamino)-2-episecurinol A (2), together with the five known related analogues 3-7, were isolated from *Securinega suffruticosa* (PALL.) REHD. Their structures were determined by detailed analysis of 1D- and 2D-NMR spectra and by comparison with the related model compounds.

Introduction. - Plants within the Euphorbiaceae family elaborate a diverse number of alkaloids with diverse structures and biological properties. The Securinega alkaloids comprise a total of 42 compounds isolated mainly from two or three species of the Securinega and the Phyllanthus genera. The antitumor, antimalarial, antibacterial, and central nervous system (CNS) activity of these compounds has initiated great interest in the synthesis of this structurally unique class of alkaloids [1-5] and attracted considerable attention of pharmacologists [6-11]. Securinega suffruticosa, a kind of semi-shrub plant widely distributed in the subtropical zone, is one of Chinese folk medicines used to treat rheumatic disease, quadriplegia, impotence, and children's malnutrition, etc. As part of our ongoing research on the bioactive constituents from traditional Chinese medicinal herbs [12-14], we made a collection of the title plant in Anhui Province, P. R. China. Separation of the CH₃Cl-soluble fraction of the MeOH extract of this plant resulted in the isolation of two new Securinega alkaloids, namely 2episecurinol A (1) and 8-(diethylamino)-2-episecurinol A (2), together with the five known related analogues 3-7) (see Fig. 1). This paper describes the isolation and structure elucidation of the new compounds 1 and 2.

Results and Discussion. – Air-dried, powdered stems of *S. suffruticosa* were extracted with MeOH, and this extract was partitioned between AcOEt and an acidic aqueous phase (pH4-5). The aqueous layer, adjusted to pH9-10 by addition of Na₂CO₃, was then extracted with CHCl₃. The CHCl₃-soluble material was subjected to repeated column chromatography on silica gel to give seven compounds, of which two, **1** and **2**, are new and the others, **3**–**7**, are known ones.

The known compounds were readily identified as allosecurinine (3) [15], virosecurinine (4) [16], securitinine (5) [17], 15α -methoxy-14,15-dihydrophyllochrysine (6) [16], and phyllanthidine (7) [18], respectively, by analysis of their NMR spectra and by comparison with the data reported in the literature.

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

2-Episecurinol A (1) was obtained as a colorless oil. The molecular formula, $C_{13}H_{17}NO_3$, consistent with six degrees of unsaturation, was determined by HR-ESI-MS $(m/z \ 236.1290 \ ([M+H]^+); \text{ calc. } 236.1287)$. The IR spectrum of 1 showed absorption bands implying the presence of an α_{β} -unsaturated γ -lactone (1736 and 1637 cm⁻¹) moiety that was supported by the UV absorption at λ_{max} 254 nm (log ε 4.06, MeOH). The ¹³C-NMR spectrum (Table) exhibited 13 signals (six CH₂, four CH, and three C) whose chemical shift values and multiplicities (DEPT) not only confirmed the presence of a butenolide moiety ($\delta(C)$ 85.0 (s), 108.5 (d), 174.5 (s), and 176.9 (s)), but also showed the presence of a OH-substituted methine group ($\delta(C)$ 69.4 (d)), and three N-bearing C-atoms ($\delta(C)$ 52.4 (t), 59.4 (d), and 63.0 (d)) in the molecule. From these

spectral data, compound 1 was deduced to be tetracyclic, containing a C=C bond and a C=O group. Detailed analysis of 1D- and 2D-NMR spectra revealed that the constitution of 1 was identical with the one of securinol A (8) [3], which was isolated from the leaves of

the same plant for the first time in 1965. In fact, as shown in the Table, the ¹³C-NMR data from C(2) to C(6) and from C(7) to C(12), and C(15) of **1** and **8** are almost identical, whereas the notable differences between them are mainly manifest at C(13)and C(14). Although the $\delta(C)$ value of C(2) in both **1** and **8** is almost the same, the ¹H-NMR chemical shifts of the bridgehead H-C(2) of **1** and **8** are distinctly different $(\delta(H) 2.20 \text{ in } \mathbf{1} \text{ and } \delta(H) 3.23 \text{ in } \mathbf{8})$ indicating that compound $\mathbf{1}$ differs from $\mathbf{8}$ only in the relative configuration at C(2). Finally, the α -configuration of H-C(2) of **1** was unambiguously determined by the observation of the diagnostic ROESY correlation between H–C(2) and H_a–C(6), and no correlation between H–C(2) and CH₂(9) (see Fig. 2). Thus, compound 1 was determined to be the C(2) epimer of 8.

Since compound 1 contains a secondary OH group at C(8), we tried to determine its absolute configuration by applying the modified Mosher's method [19]. Unfortunately, we failed to obtain the corresponding MTPA esters when treating $\mathbf{1}$ with (R)- and (S)-MTPA chlorides in dry pyridine at room temperature. However, considering the close

	1		2		8
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(C)$
$H_a - C(2)$	2.20 (dd, J = 10.2, 1.6)	63.0(d)	2.17–2.19 (<i>m</i>)	62.2(d)	62.8(d)
$H_a - C(3)$	1.60 - 1.62 (m)	25.6(t)	1.53 - 1.55 (m)	24.7(t)	24.2(t)
$H_{\beta}-C(3)$	0.87 - 0.89 (m)		0.86 - 0.88 (m)		
$H_a - C(4)$	1.25 - 1.26 (m)	22.5(t)	1.17 - 1.19(m)	24.0(s)	22.4(t)
$H_{\beta}-C(4)$	1.86 (dd, J = 2.6, 12.5)		1.80 (d, J = 12.5)		
$H_a - C(5)$	1.52 - 1.53 (m)	26.5(t)	1.58 - 1.60 (m)	27.0(d)	26.6(t)
$H_{\beta}-C(5)$	1.51 - 1.53 (m)		1.40 - 1.42 (m)		
$H_a - C(6)$	2.62 - 2.68 (m)	52.4(t)	2.71(d, 11.2)	51.4 (t)	52.5 (t)
$H_{\beta}-C(6)$	2.75 - 2.77 (m)		2.98 - 3.00 (m)		
$H_a - C(7)$	2.90(t, J = 2.5)	59.4 (d)	3.30 - 3.32(m)	59.6 (t)	59.2 (d)
H-C(8)	4.20 (dd, J = 4.9, 8.2)	69.4(d)	3.00 - 3.02(m)	67.0(d)	69.8(d)
$H_a - C(9)$	1.20 (d, J = 13.3)	41.1(t)	2.03 (d, J = 10.0)	35.2(t)	41.1(t)
$H_{\beta}-C(9)$	2.78 - 2.79 (m)		2.28 (dd, J = 9.6, 6.0)		
C(10)		85.0(s)		89.8 (s)	84.5 (s)
C(12)		174.5(s)		172.3(s)	173.6 (s)
H - C(13)	5.60(s)	108.5(d)	5.70 (s)	112.5(d)	112.7(d)
C(14)		176.9 (s)		174.3 (d)	171.8(d)
$H_a - C(15)$	3.10(d, J = 19.1)	28.0(t)	2.96 - 2.98(m)	28.8(d)	30.2(d)
$H_{\beta}-C(15)$	2.74 - 2.77 (m)		2.85 - 2.87(m)		
r ` '			2.63 $(m, 2 \operatorname{CH}_2(1'))$	43.6 (t)	
			1.00 (t, J = 7.1, 2 Me(2'))	11.3(q)	

Table. ¹*H*- and ¹³*C*-*NMR* Data^a) of Compounds **1** and **2**, and ¹³*C*-*NMR* data^a) of **8**. At 400 MHz in CDCl₃; δ in ppm, *J* in Hz.

^a) *Bruker-DRX-400* NMR spectrometer; assignments made with the aid of DEPT, ¹H,¹H-COSY, HMQC, HMBC, and ROESY experiments.

Fig. 2. Selected ¹H,¹H-COSY and HMBC (a), and ROESY data (b) of compound **1**

biogenetic relationship of 1 and 8 and for chemotaxonomic reasons, the absolute configuration of 1, except for C(2), was tentatively assigned to be the same as that of 8.

8-(Diethylamino)-2-episecurinol A (2) was obtained as a colorless oil. The molecular formula $C_{17}H_{26}N_2O_2$ was determined by HR-ESI-MS (m/z 313.1905 ($[M + Na]^+$); calc. 313.1892), consistent with six degrees of unsaturation. It was immediately apparent from the ¹H- and ¹³C-NMR data, that 2 differs from 1 only in the substituent at

C(8), where the OH group in **1** was replaced by a diethylamino moiety (δ (H) 2.63 (m, 4 H), 1.00 (t, J = 7.1, 6 H); δ (C) 43.6 (t), 11.3 (q)) in **2**. The significant HMBC crosspeak from CH₂(1') (δ (H) 2.63) to C(8) (δ (C) 67.0) clearly showed that a diethylamino moiety was linked to C(8) (*Fig. 3*). Finally, by analogy to compound **1**, the configuration of **2** was deduced to be the same as in **1**.

Fig. 3. Selected ¹H,¹H-COSY and HMBC (a), and ROESY data (b) of compound 2

The carbon skeleton of compounds 1-8 is quite rare in nature. To our knowledge, this is the second report about securinol A-like alkaloids from a natural source. The discovery of compounds 1 and 2 widened the knowledge of this intriguing group of compounds. It may be worth to point out that we have doubted about the origin of compound 2 because it differs from 1 only by the different substituent at C(8). In order to rule out the possibility that 2 might be produced during the isolation process, the MeOH extract of the plant was re-examined on the TLC with pure compound 2 as reference. The unequivocal detection of the same compound in the original extract with an identical TLC R_f value as that of the reference compound proved that 2 is a natural product and not an artifact of isolation.

The new compounds **1** and **2** were evaluated for their inhibitory activity against hPTP1B (human protein tyrosine phosphatase 1B), a key target for the treatment of type II diabetes and obesity [20]. Unfortunately, the results indicated that both compounds were inactive. Other bioassay studies for antibacterial and anti-inflammatory activities are currently underway.

Experimental Part

General. Column chromatography (CC): commercial silica gel (SiO₂; Qing Dao Hai Yang Chemical Group Co.; 200–300 mesh), amino silica gel (Merck; LiChroprep NH₂, 40–63 µm), and Sephadex LH-20 (Amersham Biosciences). TLC: precoated SiO₂ plates (Yan Tai Zi Fu Chemical Group Co.; G60, F-254). Optical rotation: Perkin-Elmer 341 polarimeter. UV Spectra: 756 CRT spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Nicolet Magna FT-IR 750 spectrophotometer; ν_{max} in cm⁻¹. ¹H- and ¹³C-NMR spectra: Varian Mercury 400 (400 MHz for ¹H and 100 MHz for ¹³C) spectrometer; chemical shifts δ in ppm, with residual CHCl₃ (δ (H) 7.26, δ (C) 77.0) or CD₃OD (δ (H) 3.30, δ (C) 49.5) as internal standard, coupling constant J in Hz. ESI-MS and HR-ESI-MS: Q-TOF Micro LC/MS-MS spectrometer in m/z.

Plant Material. S. suffruticosa (PALL.) REHD. was collected in Anhui Province, P. R. China, in June, 2007, and identified by Assoc. Prof. *X.-H. Song* of China Pharmaceutical University. A voucher specimen (P06-39) is available for inspection at the Herbarium of Shanghai Institute of Materia Medica, CAS.

Extraction and Isolation. The air-dried, powdered stems (2.1 kg) of *S. suffruticosa* were exhaustively extracted with MeOH (3×1 l, each 7 d) at r.t. Evaporation of the solvent gave a residue, which was suspended in H₂O (1 l) and adjusted to pH 4–5 with 2N H₂SO₄. The acidic mixture was defatted with AcOEt (3×1 l), and the aq. layer was basified to pH 9–10 with sat. Na₂CO₃, and then extracted with CHCl₃ (3×1 l) and BuOH (3×1 l). The CHCl₃-soluble material was subjected to SiO₂ chromatography eluted with a CHCl₃/MeOH/Et₂NH (50:1:0.1 to 1:1:0.1) gradient, and the fractions eluted with CHCl₃/MeOH/Et₂NH (50:1:0.1 to 1:1:0.1) gradient, and the fractions eluted with CHCl₃/MeOH/(4:1) and CHCl₃/MeOH (95:5)) to afford pure compounds **1** (6.7 mg), **2** (12.7 mg), **3** (16.1 mg), **4** (232.1 mg), **6** (7.2 mg), and **7** (8.3 mg).

2-Episecurinol A (=(5\$,10a\$,10bR,12R)-4,5,8,9,10,10a-Hexahydro-12-hydroxy-2H,7H-5,10b-ethanofuro[2,3-a]quinolizin-2-one; **1**). Colorless oil. $[a]_{25}^{25} = -51.1$ (c = 0.15, CHCl₃). UV (MeOH): 254 (4.06). IR (KBr): 1736, 1637. ¹H- and ¹³C-NMR: *Table*. ESI-MS: 236 ($[M + H]^+$). HR-ESI-MS: 236.1290 ($[M + H]^+$; calc. 236.1287).

8-(Diethylamino)-2-episecurinol A (=(5\$,10a\$,10bR,12R)-12-(Diethylamino)-4,5,8,9,10,10a-hexa-hydro-2H,7H-5,10b-ethanofuro[2,3-a]quinolizin-2-one; **2**). Colorless oil. [a] $_{23}^{23}$ = +77.4 (c = 0.05, CHCl₃). ¹H- and ¹³C-NMR: Table. ESI-MS: 291 ([M + H]⁺). HR-ESI-MS: 313.1905 ([M + Na]⁺; calc. 313.1892).

The research work was financially supported by the National '863' Project (No. 2006AA09Z412), *Natural Science Foundation of China* (Nos. 30730108, 20721003), CAS Key Project (grant KSCX2-YW-R-18) and STCSM Project (07XD14036) and partially funded by the grant from Syngenta-SIMM-PhD Studentship Project.

REFERENCES

- P. Petchnaree, N. Bunyapraphatsara, G. A. Cordell, H. J. Cowe, P. J. Cox, R. A. Howie, S. L. Patt, J. Chem. Soc., Perkin Trans. 1 1986, 1551.
- [2] J. L. Mensah, J. Gleye, C. Moulis, I. Fouraste, J. Nat. Prod. 1988, 51, 1113.
- [3] D. Arbain, A. A. Birkbeck, L. T. Byrne, M. V. Sargent, B. W. Skelton, A. H. White, J. Chem. Soc., Perkin Trans. 1 1991, 1863.
- [4] A. Ohsaki, H. Ishiyama, K. Yoneda, J. Kobayashi, Tetrahedron Lett. 2003, 44, 3097.
- [5] L.-S. Gan, C.-Q. Fan, S.-P. Yang, Y. Wu, L.-P. Lin, J. Ding, J.-M. Yue, Org. Lett. 2006, 8, 2285.
 [6] T. Honda, H. Namiki, K. Kaneda, H. Mizutani, Org. Lett. 2004, 6, 87.
- [7] R. Kammler, K. Polborn, K. T. Wanner, *Tetrahedron* **2003**, *59*, 3359.
- [8] T. Honda, H. Namika, M. Kudoh, H. Nagase, H. Mizutani, Heterocycles 2003, 59, 169.
- [9] W. Yuan, P. Zhu, K. Cheng, C. Meng, L. Ma, F. Wu, H. Zhu, Nat. Prod. Res. 2007, 21, 234.
- [10] H. Guan, S. You, L. Yang, X. Wang, R. Ni, Biotechnol. Lett. 2005, 27, 1189.
- [11] R. J. Parry, Bioorg. Chem. 1978, 7, 277.
- [12] W. Zhang, Y.-W. Guo, K. Krohn, Chem. Eur. J. 2006, 12, 5122.
- [13] W. Zhang, Y.-W. Guo, Chem. Pharm. Bull. 2006, 54, 1037.
- [14] Z.-Y. Li, P. Chen, H.-G. Xu, Y.-M. Yang, S.-Y. Peng, Z.-Z. Zhao, Y.-W. Guo, Org. Lett. 2007, 9, 477.
- [15] D. Arbain, L. T. Byrne, J. R. Cannon, L. M. Engelhardt, A. H. White, Aust. J. Chem. 1990, 43, 439.
- [16] N. H. Lajjs, A. Retnam, H. A. Hassan, M. N. Khan, C. H. Chua, M. V. Sargent, *Indian J. Chem., Sect. B* 1997, 36, 206.
- [17] Z. Horii, M. Ikeda, M. Hanaoka, M. Yamauchi, Y. Tamura, S. Saito, T. Tanaka, K. Kotera, N. Sugimoto, *Chem. Pharm. Bull.* **1967**, *15*, 1633.
- [18] Z. Horii, T. Imanishi, M. Yamauchi, M. Hanaoka, J. Parello, S. Munavalli, *Tetrahedron Lett.* 1972, 13, 1877.
- [19] I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092.
- [20] J. C. H. Byon, A. B. Kusari, J. Kuseti, Mol. Cell. Biochem. 1998, 182, 101.